Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(15)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38639312

RESUMO

Stretching or compression can induce significant energetic, geometric, and spectroscopic changes in materials. To fully exploit these effects in the design of mechano- or piezo-chromic materials, self-healing polymers, and other mechanoresponsive devices, a detailed knowledge about the distribution of mechanical strain in the material is essential. Within the past decade, Judgement of Energy DIstribution (JEDI) analysis has emerged as a useful tool for this purpose. Based on the harmonic approximation, the strain energy in each bond length, bond angle, and dihedral angle of the deformed system is calculated using quantum chemical methods. This allows the identification of the force-bearing scaffold of the system, leading to an understanding of mechanochemical processes at the most fundamental level. Here, we present a publicly available code that generalizes the JEDI analysis, which has previously only been available for isolated molecules. Now, the code has been extended to two- and three-dimensional periodic systems, supramolecular clusters, and substructures of chemical systems under various types of deformation. Due to the implementation of JEDI into the Atomic Simulation Environment, the JEDI analysis can be interfaced with a plethora of program packages that allow the calculation of electronic energies for molecular systems and systems with periodic boundary conditions. The automated generation of a color-coded three-dimensional structure via the Visual Molecular Dynamics program allows insightful visual analyses of the force-bearing scaffold of the strained system.

2.
Chemphyschem ; 23(23): e202200414, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-35946306

RESUMO

When calculating structural or spectroscopic properties of molecular crystals, the question arises whether it is sufficient to simulate only a single molecule or a small molecular cluster or whether the simulation of the entire crystal is indispensable. In this work we juxtapose calculations on the high-pressure structural properties of the (periodic) HCN crystal and chains of HCN molecules of finite length. We find that, in most cases, the behavior of the crystal can be reproduced by computational methods simulating only around 15 molecules. The pressure-induced lengthening of the C-H bond in HCN found in calculations on both the periodic and finite material are explained in terms of orbital interaction. Our results pave the way for a more thorough understanding of high-pressure structural properties of materials and give incentives for the design of materials that expand under pressure. In addition, they shed light on the complementarity between calculations on periodic materials and systems of finite size.


Assuntos
Cianeto de Hidrogênio , Cianeto de Hidrogênio/química , Modelos Moleculares , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...